Overview: TB Alliance Drug Development Pipeline

Mengchun Li, MD Head of Pharmacovigilance, TB Alliance Mar 26, 2018

TB Pandemic

- TB is the leading infectious disease killer, and a top 10 killer worldwide.
- TB kills 1 person nearly every 18 seconds; 1.7 million die each year.
- 10.4 million new cases annually.
- Leading killer of people with AIDS.
- Drug resistance is on the rise—over half a million annual cases.
- 1 million children become ill with TB each year and 210,000 die.

→ TB ALLIANCE

Current TB Therapy

OLD

Arsenal of drugs developed mostly in 1960s.

LONG

TB treatment today takes 6-30+ months.

COMPLEX

Many pills must be taken daily; Drug-resistant treatment includes daily injections.

EXPENSIVE

Drug-resistant TB drugs can cost > \$10,000 per treatment.

INADEQUATE `

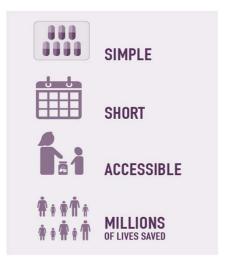
Breeds resistance & default; incompatible with some HIV treatments; DR-TB treatment often fails.

About TB Alliance: A Product Development Partnership

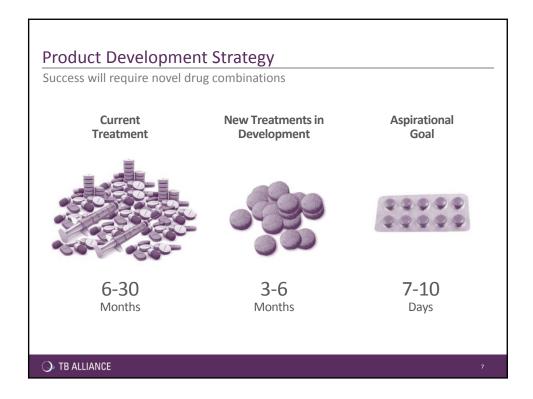
Catalyzing and advancing new TB cures

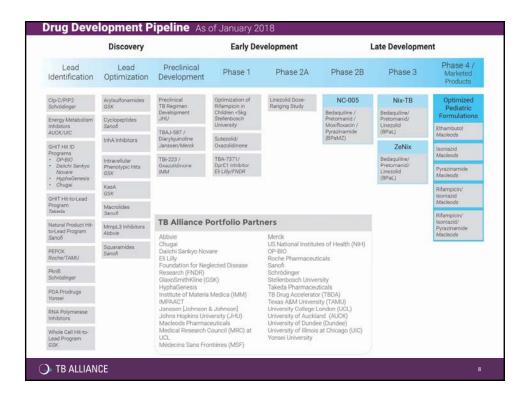
- Established in 2000
- Largest TB drug pipeline in history
- Redefining the way TB drugs are developed
 - Virtual business model promotes innovation and efficient progress
 - Leverage global pipeline of drugs to find the most promising TB regimens
 - Transform treatment with new regimens that treat drug-sensitive and drug-resistant TB
- "AAA Mandate": All new regimens will be adopted, available, and affordable

→ TB ALLIANCE


5

Our Vision: Better TB Medicines for All


Discover, develop and deliver better and faster TB regimens


Achieving maximum impact will require:

- A sustainable pipeline of novel drugs to form the basis for universal regimens effective in all people with active TB
- An ultra short and effective therapy for latent infection
- All TB treatments appropriately formulated for children.

TB ALLIANCE

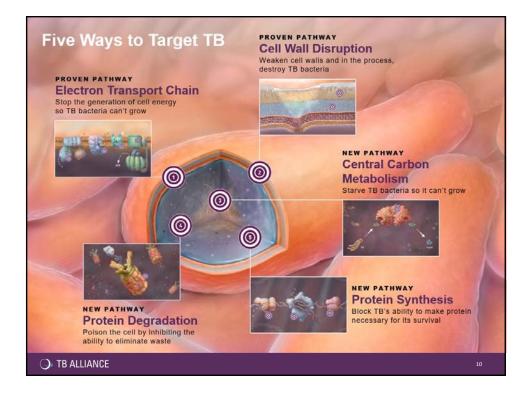
Early-Stage Research: Filling the Pipeline

A three-pronged approach

TB Alliance leverages industry and other partners to support the continued growth of the global TB drug pipeline.

Optimize <u>known</u> compound classes

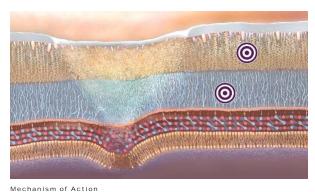
• Fully capitalize on the success of compounds already in development


Develop novel classes based on known targets

• Leverage validated drug targets, discover novel classes to address resistance

Develop novel classes based on <u>novel</u> targets

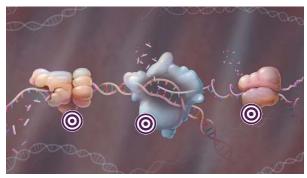
Discover new drug classes with novel modes of action


→ TB ALLIANCE

TBA-7371

New Phase 1 Compound

- Last sample from Phase 1 study expected June 2018
- A novel mechanism of action
- Target: DprE1


Cell Wall Disruption

→ TB ALLIANCE

Sutezolid

New Phase 1 Study

- Oxazolidinone similar class as linezolid
- Phase 1 began in September 2017
- Investigating relative advantages to linezolid

Mechanism of Action

Protein Synthesis

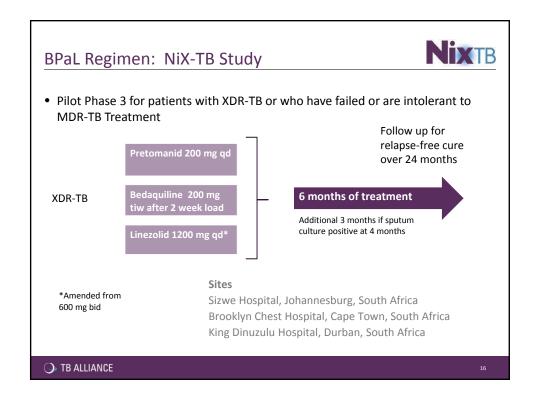
→ TB ALLIANCE

Recent Discovery Progress

Advancing the pipeline

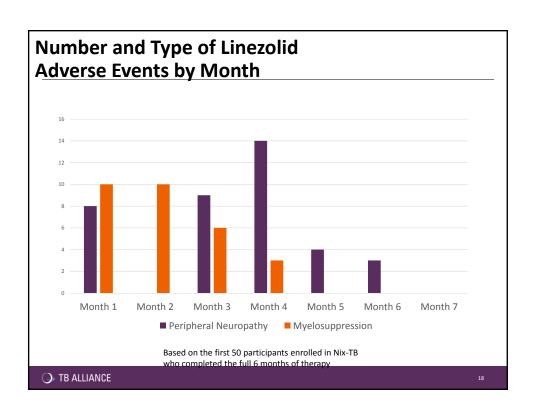
- Expanded partnership with GHIT
- Two IND filings expected late 2018:
 - TBAJ-587 (diarylquinoline) in partnership with Merck
 - TBA-223 (oxazolidinone)
- Progression of Sanofi and GSK partnered projects

→ TB ALLIANCE


12

Late-stage Clinical program update

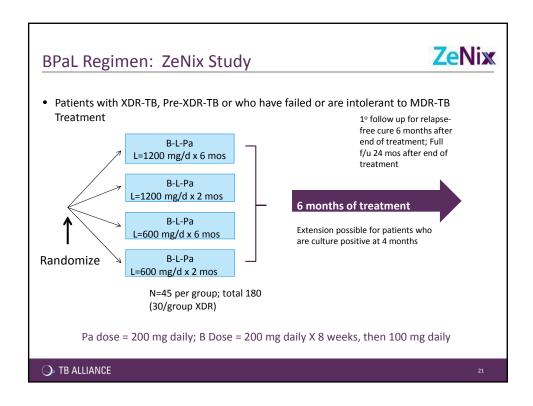
Nix-TB (BPaL) Trial



Status of Participants in Nix-TB

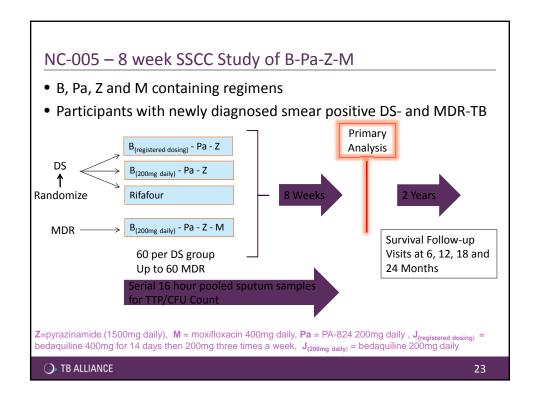
- 109 participants enrolled as of end enrollment November 15, 2017
- Status as of February 2018:
 - 85 have completed treatment
 - 63 have reached their primary endpoint (6 months after end of treatment)
 - 11 patients have completed the study (Month 30)
- Overall relapse-free cure of TB disease among the first 30 followed to primary endpoint 6 months after end of therapy:
 - -26/30 = 87% (vs. historical up to 85% failure rate)
 - Transitioned to Zenix

→ TB ALLIANCE



Linezolid Optimization

- Safety management in clinical trial Vs in the field
- Efficacy Vs Safety
- Duration Vs dosage
 - Linezolid dose ranging study result
 - Mouse data



Evaluate Linezolid dose Evaluate Linezolid duration

Testing Combinations of Bedaquiline, Pretomanid, Pyrazinamide and Moxifloxacin (BPaZM)

Percent of Patients Culture Negative at 2 Months Kaplan-Meyer Analysis Liquid Culture Solid Culture Overnight Overnight Spot Spot B(loading)PaZ 67% 84%* 89% 88%* B(200mg)PaZ 76%* 79% 84% 92%* BPaZM (MDR) Z-96%* 89%* 100%* 97%* sensitive BPaZM (MDR) Z-80%* 95%* resistant HRZE control 51% 63% 86% 79% *Statistically significant vs HRZE TB ALLIANCE

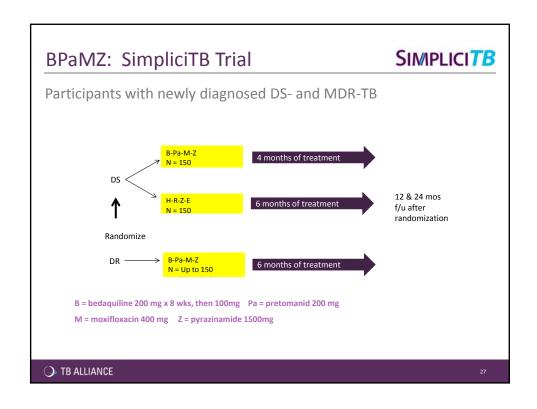
NC-005: Time to Culture Negativity

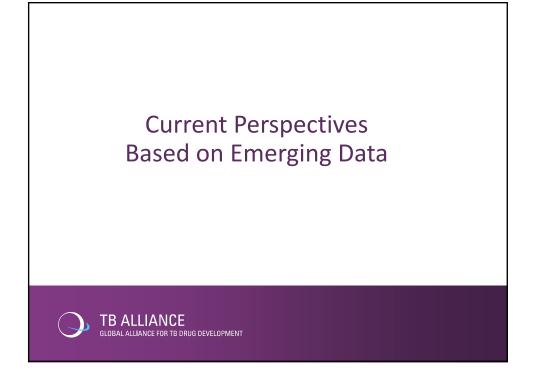
Hazard Ratio vs HRZE (95% CI)

	Liquid Culture	Solid Culture
B(loading)PaZ	1.8* (1.1 – 2.9)	1.3 (0.9 – 1.8)
B(200mg)PaZ	2.0* (1.3 – 3.2)	1.1 (0.8 – 1.6)
BPaZM (MDR) Z-sensitive	3.3* (2.1 – 5.2)	2.2* (1.5 – 3.2)
BPaZM (MDR) Z-resistant	2.2* (1.3 – 3.9)	2.6* (1.4 – 4.5)
HRZE Control		

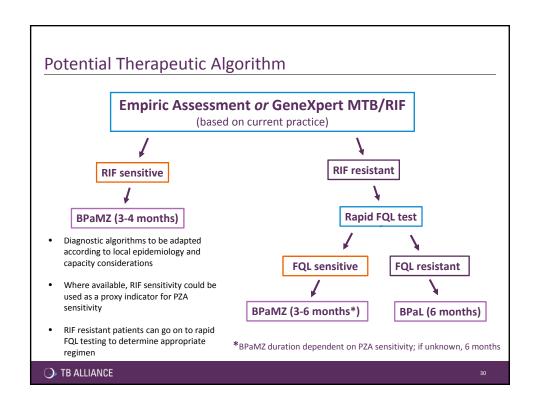
NC-002	Liquid Culture	Solid Culture
PaMZ	1.7* (1.1 – 2.7)	1.6* (1.1 – 2.2)

 $[\]hbox{*Statistically significant vs HRZE}$




25

Conclusions


- BPaZ and BPaZM active and well tolerated
 - BPaMZ > BPaZ > PaMZ > HRZE in both clinical and preclinical data
- BPaZM appears to be markedly superior to HRZE in terms of time to culture negativity and potentially time to cure
 - Additional advantages over both PaMZ and BPaZ in MDR
 - Patients with Z resistance can be treated
 - Rapid DST for Z not needed, DST for Z not needed
- B(200mg) appears at least as active and safe as B(labeled dose)

→ TB ALLIANCE

